

Language Technologies Institute

Task

Grammartical Error Correction (GEC): Detect errors (misspelling, subject-verb agreement, determiner, etc.) in the sentences and correct them.

Input Plaing cards is bored, and exspensive. Output Playing cards is boring and expensive .

Challenges

• Current grammatical error correction methods require large amount of annotated data, which may not be accessible in many languages.

Motivation

Utilizing grammatical information captured by unsupervised contextual model pre-trained on large corpora, like BERT [1] and extending to GEC in many languages with minimal supervision.

Dataset

• **Corpus:** The First Certificate in English (FCE), preprocessed to single error sentence-edit pairs (each edit and last edit).

Proposed Method

Two stages:

- Error Identification:
- BERT to detect.
- Mask placement.
- Mask Prediction:
- Predict token at masked position.
- Rerank candidates.

[1] Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proc. NAACL-HLT, 2019 [2] bert-base-multilingual-cased in https://github.com/huggingface/transformers/tree/master/transformers [3] Kaneko, M., and Komachi, Multi-head multi-layer attention to deep language rep-resentations for

grammatical error detection. Computaciony Sistemas, 2019

Towards Minimal Supervision BERT-based Grammar Error Correction

Yiyuan Li, Antonios Anastasopoulos and Alan W Black

Carnegie Mellon University, Pittsburgh, PA yiyuanli@andrew.cmu.edu {aanastas, awb}@cs.cmu.edu

Model

Result

Table 1:Sentence-level evaluation.

Masking Strategy	each edit			last edit			Masking Strategy	each edit		last edit	
	P@1	R@1	$F_{0.5}@1$	P@1	R@1	$F_{0.5}@1$	Masking Durabegy	Acc@1	Acc@5	Acc@1	Acc@5
# origin	0.632	0.853	0.667	0.592	0.824	0.627	# origin	0.292	0.455	0.229	0.390
# target	0.66	0.887	0.696	0.614	0.855	0.651	# target	0.313	0.484	0.247	0.405
single	0.763	0.931	0.790	0.767	0.920	0.794	single	0.365	0.554	0.312	0.501

• Evaluate and predict on multilingual masked language model version of BERT [2] with different annotation schemes (# masks follow length of error span / correction / single).

- Sentence level evaluated by ERRANT (Table 1).
- Token level evaluated by performance@5 and performance@1 (Table 2).

- Multilingual BERT achieves precision over 0.7 without fine-tuning.
- Further potential improvement by reranking.

Kaneko and Komachi 2019 [3] [0.698 0.374 0.595 Table 3:Performance of fine-tuning BERT on FCE for grammatical error detection (GED)

• Masking and fluency measure: To limit unwanted freedom in prediction, and set up criterion for iterative editing.

Electrical & Computer

Error Analysis

Common BERT prediction errors, with the original error and the prediction highlighted.

Example #1: Redundant Edits

Source Of course there 's also a number 8 bus in front of the hotel, which is also suitable but it leaves only every half an hour

Mask. Of course there 's also a number 8 bus [MASK] in front of the hotel, which is also suitable, but it leaves only every half an hour

Target Of course there 's also a number 8 bus , in front of the hotel , which is also suitable , but it leaves only every half an hour

Ours Of course there 's also a number 8 bus stop in front of the hotel, which is also suitable, but it leaves only every half an hour

Example #2: Synonyms

Source The aim of this report is to <u>recomend</u> you to visit the Fuerte de San Diego Museum Mask. The aim of this report is to [MASK] you to visit the Fuerte de San Diego Museum **Target** The aim of this report is to <u>recommend</u> you to visit the Fuerte de San Diego Museum The aim of this report is to <u>allow</u> you to visit the Fuerte de San Diego Museum

Example #3: Hallucination

Source Of course there 's also a <u>bus number 8</u>, in front of the hotel, which is also suitable , but it leaves only every half an hour

Mask. Of course there 's also a [MASK] [MASK] [MASK], in front of the hotel, which is also suitable, but it leaves only every half an hour **Target** Of course there 's also a <u>number 8 bus</u>, in front of the hotel, which is also suitable

, but it leaves only every half an hour

Ours Of course there 's also a small parking station , in front of the hotel , which is also suitable, but it leaves only every half an hour

Future Work

• Error fertility: Accurate mask placement. • Better span detection: To leverage redundant

Pro trained Model	GED					
I IC-Maineu Mouer	Р	R	F _{0.5}			
BERT-base-uncased	0.480	0.359	0.450			
BERT-multilingual-uncased	0.464	0.319	0.426			
Kanaka and Kamaahi 2010 [2]	0 609	0.274	0 505			

Conclusion

• Pre-trained BERT can achieve more than 0.7 precision in single-error grammatical error correction without fine-tuning, and could be potentially improved by re-ranking.

• Advanced masking and fluency measure are needed to leverage information lost by masking and setting up ending criterion in editing.